OFFSET
1,1
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
MAPLE
cvm := proc(n, level) local f, opf; if n < 2 then RETURN() fi;
f := ifactors(n); opf := op(1, op(2, f)); if nops(op(2, f)) > 1 or
op(2, opf) <= level then RETURN() fi; op(1, opf) end:
A025476_list := n -> seq(cvm(i, 1), i=1..n); # n is search limit
A025476_list(30000); # Peter Luschny, Sep 21 2011
# Alternative:
isA246547 := n -> n > 1 and not isprime(n) and type(n, 'primepower'):
seq(ifactors(p)[2][1][1], p in select(isA246547, [$1..30000])); # Peter Luschny, Jul 15 2023
MATHEMATICA
Transpose[ Flatten[ FactorInteger[ Select[ Range[2, 30000], !PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ]] == 0 &]], 1]][[1]] (* Robert G. Wilson v *)
PROG
(PARI) forcomposite(n=4, 10^5, if( ispower(n, , &p) && isprime(p), print1(p, ", "))) \\ Joerg Arndt, Sep 11 2021
(Python)
from sympy import primepi, integer_nthroot, primefactors
def A025476(n):
def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return primefactors(kmax)[0] # Chai Wah Wu, Aug 15 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved