login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025473
a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).
29
1, 2, 3, 2, 5, 7, 2, 3, 11, 13, 2, 17, 19, 23, 5, 3, 29, 31, 2, 37, 41, 43, 47, 7, 53, 59, 61, 2, 67, 71, 73, 79, 3, 83, 89, 97, 101, 103, 107, 109, 113, 11, 5, 127, 2, 131, 137, 139, 149, 151, 157, 163, 167, 13, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
OFFSET
1,2
COMMENTS
This sequence is related to the cyclotomic sequences A013595 and A020500, leading to the procedure used in the Mathematica program. - Roger L. Bagula, Jul 08 2008
"LCM numeral system": a(n+1) is radix for index n, n >= 0; a(-n+1) is 1/radix for index n, n < 0. - Daniel Forgues, May 03 2014
This is the LCM-transform of A000961; same as A014963 with all 1's (except a(1)) removed. - David James Sycamore, Jan 11 2024
REFERENCES
Paul J. McCarthy, Algebraic Extensions of Fields, Dover books, 1976, pages 40, 69
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
FORMULA
a(n) = A006530(A000961(n)) = A020639(A000961(n)). - David Wasserman, Feb 16 2006
From Reinhard Zumkeller, Jun 26 2011: (Start)
A000961(n) = a(n)^A025474(n).
A056798(n) = a(n)^(2*A025474(n)).
A192015(n) = A025474(n)*a(n)^(A025474(n)-1). (End)
a(1) = A051451(1) ; for n > 1, a(n) = A051451(n)/A051451(n-1). - Peter Munn, Aug 11 2024
MAPLE
cvm := proc(n, level) local f, opf; if n < 2 then RETURN() fi;
f := ifactors(n); opf := op(1, op(2, f)); if nops(op(2, f)) > 1 or
op(2, opf) <= level then RETURN() fi; op(1, opf) end:
A025473_list := n -> [1, seq(cvm(i, 0), i=1..n)];
A025473_list(240); # Peter Luschny, Sep 21 2011
MATHEMATICA
a = Join[{1}, Flatten[Table[If[PrimeQ[Apply[Plus, CoefficientList[Cyclotomic[n, x], x]]], Apply[Plus, CoefficientList[Cyclotomic[n, x], x]], {}], {n, 1, 1000}]]] (* Roger L. Bagula, Jul 08 2008 *)
Join[{1}, First@ First@# & /@ FactorInteger@ Select[Range@ 240, PrimePowerQ]] (* Robert G. Wilson v, Aug 17 2017 *)
PROG
(Sage)
def A025473_list(n) :
R = [1]
for i in (2..n) :
if i.is_prime_power() :
R.append(prime_divisors(i)[0])
return R
A025473_list(239) # Peter Luschny, Feb 07 2012
(Haskell)
a025473 = a020639 . a000961 -- Reinhard Zumkeller, Aug 14 2013
(PARI) print1(1); for(n=2, 1e3, if(isprimepower(n, &p), print1(", "p))) \\ Charles R Greathouse IV, Apr 28 2014
(Python)
from sympy import primepi, integer_nthroot, primefactors
def A025473(n):
if n == 1: return 1
def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length())))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return primefactors(m)[0] # Chai Wah Wu, Aug 15 2024
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
David W. Wilson, Dec 11 1999
EXTENSIONS
Offset corrected by David Wasserman, Dec 22 2008
STATUS
approved