login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).
29

%I #68 Aug 16 2024 08:37:19

%S 1,2,3,2,5,7,2,3,11,13,2,17,19,23,5,3,29,31,2,37,41,43,47,7,53,59,61,

%T 2,67,71,73,79,3,83,89,97,101,103,107,109,113,11,5,127,2,131,137,139,

%U 149,151,157,163,167,13,173,179,181,191,193,197,199,211,223,227,229,233,239

%N a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).

%C This sequence is related to the cyclotomic sequences A013595 and A020500, leading to the procedure used in the Mathematica program. - _Roger L. Bagula_, Jul 08 2008

%C "LCM numeral system": a(n+1) is radix for index n, n >= 0; a(-n+1) is 1/radix for index n, n < 0. - _Daniel Forgues_, May 03 2014

%C This is the LCM-transform of A000961; same as A014963 with all 1's (except a(1)) removed. - _David James Sycamore_, Jan 11 2024

%D Paul J. McCarthy, Algebraic Extensions of Fields, Dover books, 1976, pages 40, 69

%H David Wasserman, <a href="/A025473/b025473.txt">Table of n, a(n) for n = 1..1000</a>

%H OEIS Wiki, <a href="/wiki/LCM_numeral_system">LCM numeral system</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclotomicPolynomial.html">Cyclotomic Polynomial</a>

%F a(n) = A006530(A000961(n)) = A020639(A000961(n)). - _David Wasserman_, Feb 16 2006

%F From _Reinhard Zumkeller_, Jun 26 2011: (Start)

%F A000961(n) = a(n)^A025474(n).

%F A056798(n) = a(n)^(2*A025474(n)).

%F A192015(n) = A025474(n)*a(n)^(A025474(n)-1). (End)

%F a(1) = A051451(1) ; for n > 1, a(n) = A051451(n)/A051451(n-1). - _Peter Munn_, Aug 11 2024

%p cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi;

%p f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or

%p op(2,opf) <= level then RETURN() fi; op(1,opf) end:

%p A025473_list := n -> [1,seq(cvm(i,0),i=1..n)];

%p A025473_list(240); # _Peter Luschny_, Sep 21 2011

%t a = Join[{1}, Flatten[Table[If[PrimeQ[Apply[Plus, CoefficientList[Cyclotomic[n, x], x]]], Apply[Plus, CoefficientList[Cyclotomic[n, x], x]], {}], {n, 1, 1000}]]] (* _Roger L. Bagula_, Jul 08 2008 *)

%t Join[{1}, First@ First@# & /@ FactorInteger@ Select[Range@ 240, PrimePowerQ]] (* _Robert G. Wilson v_, Aug 17 2017 *)

%o (Sage)

%o def A025473_list(n) :

%o R = [1]

%o for i in (2..n) :

%o if i.is_prime_power() :

%o R.append(prime_divisors(i)[0])

%o return R

%o A025473_list(239) # _Peter Luschny_, Feb 07 2012

%o (Haskell)

%o a025473 = a020639 . a000961 -- _Reinhard Zumkeller_, Aug 14 2013

%o (PARI) print1(1); for(n=2,1e3, if(isprimepower(n,&p), print1(", "p))) \\ _Charles R Greathouse IV_, Apr 28 2014

%o (Python)

%o from sympy import primepi, integer_nthroot, primefactors

%o def A025473(n):

%o if n == 1: return 1

%o def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))

%o m, k = n, f(n)

%o while m != k:

%o m, k = k, f(k)

%o return primefactors(m)[0] # _Chai Wah Wu_, Aug 15 2024

%Y Cf. A013595, A020500, A025476.

%Y Cf. A000961, A014963, A051451.

%K easy,nonn,nice

%O 1,2

%A _David W. Wilson_, Dec 11 1999

%E Offset corrected by _David Wasserman_, Dec 22 2008