login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025479
Largest exponents of perfect powers (A001597).
15
2, 2, 3, 2, 4, 2, 3, 5, 2, 2, 6, 4, 2, 2, 3, 7, 2, 2, 2, 3, 2, 5, 8, 2, 2, 3, 2, 2, 2, 2, 9, 2, 2, 4, 2, 6, 2, 2, 2, 2, 3, 10, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 11, 2, 7, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 12, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 8, 2, 3, 2, 2, 2
OFFSET
1,1
COMMENTS
Greatest common divisor of all prime-exponents in canonical factorization of n-th perfect power. - Reinhard Zumkeller, Oct 13 2002
Asymptotically, 100% of the terms are 2, since the density of cubes and higher powers among the squares and higher powers is 0. - Daniel Forgues, Jul 22 2014
LINKS
FORMULA
a(n) = A052409(A001597(n)). - Reinhard Zumkeller, Oct 13 2002
A001597(n) = A025478(n)^a(n). - Reinhard Zumkeller, Mar 28 2014
MAPLE
N:= 10^6: # to get terms corresponding to all perfect powers <= N
V:= Vector(N, storage=sparse);
V[1]:= 2:
for p from 2 to ilog2(N) do
V[[seq(i^p, i=2..floor(N^(1/p)))]]:= p
od:
r, c, A := ArrayTools:-SearchArray(V):
convert(A, list); # Robert Israel, Apr 25 2017
MATHEMATICA
Prepend[DeleteCases[#, 0], 2] &@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, e, 0] &@ FactorInteger@ n, {n, 10^4}] (* Michael De Vlieger, Apr 25 2017 *)
PROG
(Haskell)
a025479 n = a025479_list !! (n-1) -- a025479_list is defined in A001597.
-- Reinhard Zumkeller, Mar 28 2014, Jul 15 2012
(PARI) print1(2, ", "); for(k=2, 3^8, if(j=ispower(k), print1(j, ", "))) \\ Hugo Pfoertner, Jan 01 2019
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
Definition corrected by Daniel Forgues, Mar 07 2009
STATUS
approved