login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest exponents of perfect powers (A001597).
15

%I #30 Jan 01 2019 07:01:21

%S 2,2,3,2,4,2,3,5,2,2,6,4,2,2,3,7,2,2,2,3,2,5,8,2,2,3,2,2,2,2,9,2,2,4,

%T 2,6,2,2,2,2,3,10,2,2,2,4,3,2,2,2,2,2,3,2,2,2,2,11,2,7,3,2,2,4,2,2,2,

%U 3,2,2,2,5,2,2,2,3,2,2,2,2,2,12,2,2,2,2,2,2,3,2,2,2,2,2,2,3,2,2,2,2,8,2,3,2,2,2

%N Largest exponents of perfect powers (A001597).

%C Greatest common divisor of all prime-exponents in canonical factorization of n-th perfect power. - _Reinhard Zumkeller_, Oct 13 2002

%C Asymptotically, 100% of the terms are 2, since the density of cubes and higher powers among the squares and higher powers is 0. - _Daniel Forgues_, Jul 22 2014

%H Daniel Forgues, <a href="/A025479/b025479.txt">Table of n, a(n) for n=1..10000</a>

%F a(n) = A052409(A001597(n)). - _Reinhard Zumkeller_, Oct 13 2002

%F A001597(n) = A025478(n)^a(n). - _Reinhard Zumkeller_, Mar 28 2014

%p N:= 10^6: # to get terms corresponding to all perfect powers <= N

%p V:= Vector(N,storage=sparse);

%p V[1]:= 2:

%p for p from 2 to ilog2(N) do

%p V[[seq(i^p,i=2..floor(N^(1/p)))]]:= p

%p od:

%p r,c,A := ArrayTools:-SearchArray(V):

%p convert(A,list); # _Robert Israel_, Apr 25 2017

%t Prepend[DeleteCases[#, 0], 2] &@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, e, 0] &@ FactorInteger@ n, {n, 10^4}] (* _Michael De Vlieger_, Apr 25 2017 *)

%o (Haskell)

%o a025479 n = a025479_list !! (n-1) -- a025479_list is defined in A001597.

%o -- _Reinhard Zumkeller_, Mar 28 2014, Jul 15 2012

%o (PARI) print1(2,", "); for(k=2, 3^8, if(j=ispower(k),print1(j,", "))) \\ _Hugo Pfoertner_, Jan 01 2019

%Y Cf. A001597, A025478, A052409, A124010, A322969.

%K easy,nonn

%O 1,1

%A _David W. Wilson_

%E Definition corrected by _Daniel Forgues_, Mar 07 2009