login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043261
Sum of the binary digits of the n-th base-2 palindrome.
1
0, 1, 2, 2, 3, 2, 4, 2, 3, 4, 5, 2, 4, 4, 6, 2, 3, 4, 5, 4, 5, 6, 7, 2, 4, 4, 6, 4, 6, 6, 8, 2, 3, 4, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 7, 8, 9, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 2, 3, 4, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 7, 8, 9, 4, 5, 6, 7, 6, 7, 8, 9, 6, 7, 8
OFFSET
1,3
LINKS
FORMULA
Let b(1) = 0, b(2) = 1, otherwise b(2*n-1) = b(n-1) and b(2*n) = b(n).
Let c(1) = 0, c(2) = 1, otherwise c(2*n-1) = c(n-1)+1 and c(2*n) = c(n).
Then for n >= 2, a(2*n-1) = 2*c(2*n-1) - b(2*n-1) and a(2*n) = 2*c(2*n).
EXAMPLE
The fourth base-2 palindrome is 5 = 101_2, so a(4) = 1+0+1 = 2.
MAPLE
b:= proc(n) option remember;
procname(floor(n/2)) end proc;
b(1):= 0; b(2):= 1;
c:= proc(n) option remember;
procname(floor(n/2)) + (n mod 2) end proc;
c(1):= 0; c(2):= 1;
A043261:= n -> 2*c(n) - (n mod 2)*b(n);
A043261(2):= 1; # Robert Israel, Apr 06 2014
PROG
(Python)
def A043261(n):
if n == 1: return 0
a = 1<<(l:=n.bit_length()-2)
m = a|(n&a-1)
return (m.bit_count()<<1) - (0 if a&n else m&1) # Chai Wah Wu, Jun 13 2024
CROSSREFS
Cf. A006995 (base-2 palindromes), A057148.
Sequence in context: A334762 A358040 A305461 * A157986 A025479 A079243
KEYWORD
nonn,base
EXTENSIONS
edited by Robert Israel, Apr 06 2014
STATUS
approved