|
|
A246547
|
|
Prime powers p^e where p is a prime and e >= 2 (prime powers without the primes or 1).
|
|
105
|
|
|
4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14641
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
These are sometimes called the proper prime powers.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
isA246547 := proc(n)
local ifs;
ifs := ifactors(n)[2] ;
if nops(ifs) <> 1 then
false;
else
is(op(2, op(1, ifs)) > 1);
end if;
end proc:
for n from 2 do
if isA246547(n) then
print(n) ;
end if;
isA246547 := n -> not isprime(n) and nops(numtheory:-factorset(n)) = 1:
|
|
MATHEMATICA
|
With[{upto=15000}, Complement[Select[Range[upto], PrimePowerQ], Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Nov 28 2014 *)
Select[ Range@ 15000, PrimePowerQ@# && !SquareFreeQ@# &] (* Robert G. Wilson v, Dec 01 2014 *)
With[{n = 15000}, Union@ Flatten@ Table[Array[p^# &, Floor@ Log[p, n] - 1, 2], {p, Prime@ Range@ PrimePi@ Sqrt@ n}] ] (* Michael De Vlieger, Jul 06 2018, faster program *)
|
|
PROG
|
(PARI) for(n=1, 10^5, if(isprimepower(n)>=2, print1(n, ", ")));
(PARI) m=10^5; v=[]; forprime(p=2, sqrtint(m), e=2; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Aug 29 2014
(SageMath)
def A246547List(n):
return [p for p in srange(2, n) if p.is_prime_power() and not p.is_prime()]
(Python)
from sympy import primepi, integer_nthroot
def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
|
|
CROSSREFS
|
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|