OFFSET
0,1
COMMENTS
Excess of prime factors with multiplicity over distinct prime factors for random (large) integers. - Charles R Greathouse IV, Sep 06 2011
Sum of reciprocals of (proper) prime powers. The sum of reciprocals of all proper powers is A072102. - Charles R Greathouse IV, Apr 24 2012
Decimal expansion of the infinite sum of the reciprocals of the prime powers which are not prime (A246547). - Robert G. Wilson v, May 13 2019
See the second 'Applications' example under the Mathematica help file for the function PrimePowerQ. - Robert G. Wilson v, May 13 2019
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants, p. 94.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..10000 (first 1002 terms from Jason Kimberley).
Henri Cohen, High-precision computation of Hardy-Littlewood constants, preprint 1991.
Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Tables 8 and 10.
Michael Ian Shamos, Property Enumerators and a Partial Sum Theorem, 2011; alternative link.
FORMULA
Equals Sum_{s>=2} P(s), where P is the prime zeta function. - Charles R Greathouse IV, Sep 06 2011
Equals A083342 - A077761, that is, Sum_{n>=2} ((EulerPhi(n) - MoebiusMu(n))/n) * log(zeta(n)). - Jean-François Alcover, Sep 02 2015
Equals 2 * Sum_{k>=2} pi(k)/(k^3-k), where pi(k) = A000720(k) (Shamos, 2011, p. 8). - Amiram Eldar, Mar 12 2024
EXAMPLE
Equals 1/2 + 1/(3*2) + 1/(5*4) + 1/(7*6) + ...
= 0.7731566690497951278643674598559423956187413360831860483110060673567...
MATHEMATICA
digits = 103; sp = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)
PROG
(PARI) W(x)=solve(y=log(x)/2, max(1, log(x)), y*exp(y)-x)
eps()=2. >> (32*ceil(default(realprecision)/9.63))
primezeta(s)=my(t=s*log(2), iter=W(t/eps())\t); sum(k=1, iter, moebius(k)/k*log(abs(zeta(k*s))))
a(lim, e)={ \\ choose parameters to maximize speed and precision
my(x, y=exp(W(lim)-.5));
x=lim^e*(e*log(y))^e*(y*log(y))^-e*incgam(-e, e*log(y));
forprime(p=2, lim, x+=1/((p*1.)^e*(p-1)));
x+sum(n=2, e, primezeta(n))
}; \\ Charles R Greathouse IV, Sep 07 2011
(PARI) sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021
(Magma) R := RealField(105);
c := &+[R|(EulerPhi(n)-MoebiusMu(n))/n*Log(ZetaFunction(R, n)):n in[2..360]];
Reverse(IntegerToSequence(Floor(c*10^103))); // Jason Kimberley, Jan 12 2017
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Mar 09 2008
EXTENSIONS
More terms from D. S. McNeil, Sep 06 2011
More digits from Jean-François Alcover, Sep 02 2015
STATUS
approved