login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136141
Decimal expansion of Sum_{p prime} 1/(p*(p-1)).
41
7, 7, 3, 1, 5, 6, 6, 6, 9, 0, 4, 9, 7, 9, 5, 1, 2, 7, 8, 6, 4, 3, 6, 7, 4, 5, 9, 8, 5, 5, 9, 4, 2, 3, 9, 5, 6, 1, 8, 7, 4, 1, 3, 3, 6, 0, 8, 3, 1, 8, 6, 0, 4, 8, 3, 1, 1, 0, 0, 6, 0, 6, 7, 3, 5, 6, 7, 0, 9, 0, 2, 8, 4, 8, 9, 2, 3, 3, 3, 9, 7, 8, 3, 3, 7, 9, 8, 7, 5, 8, 8, 2, 3, 3, 2, 0, 8, 1, 8, 3, 2, 8, 9
OFFSET
0,1
COMMENTS
Excess of prime factors with multiplicity over distinct prime factors for random (large) integers. - Charles R Greathouse IV, Sep 06 2011
Sum of reciprocals of (proper) prime powers. The sum of reciprocals of all proper powers is A072102. - Charles R Greathouse IV, Apr 24 2012
Decimal expansion of the infinite sum of the reciprocals of the prime powers which are not prime (A246547). - Robert G. Wilson v, May 13 2019
See the second 'Applications' example under the Mathematica help file for the function PrimePowerQ. - Robert G. Wilson v, May 13 2019
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants, p. 94.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..10000 (first 1002 terms from Jason Kimberley).
Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Tables 8 and 10.
FORMULA
Equals Sum_{n>=1} 1/(A001248(n) - A000040(n)).
Equals Sum_{s>=2} P(s), where P is the prime zeta function. - Charles R Greathouse IV, Sep 06 2011
Equals A083342 - A077761, that is, Sum_{n>=2} ((EulerPhi(n) - MoebiusMu(n))/n) * log(zeta(n)). - Jean-François Alcover, Sep 02 2015
Equals 2 * Sum_{k>=2} pi(k)/(k^3-k), where pi(k) = A000720(k) (Shamos, 2011, p. 8). - Amiram Eldar, Mar 12 2024
EXAMPLE
Equals 1/2 + 1/(3*2) + 1/(5*4) + 1/(7*6) + ...
= 0.7731566690497951278643674598559423956187413360831860483110060673567...
MATHEMATICA
digits = 103; sp = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)
PROG
(PARI) W(x)=solve(y=log(x)/2, max(1, log(x)), y*exp(y)-x)
eps()=2. >> (32*ceil(default(realprecision)/9.63))
primezeta(s)=my(t=s*log(2), iter=W(t/eps())\t); sum(k=1, iter, moebius(k)/k*log(abs(zeta(k*s))))
a(lim, e)={ \\ choose parameters to maximize speed and precision
my(x, y=exp(W(lim)-.5));
x=lim^e*(e*log(y))^e*(y*log(y))^-e*incgam(-e, e*log(y));
forprime(p=2, lim, x+=1/((p*1.)^e*(p-1)));
x+sum(n=2, e, primezeta(n))
}; \\ Charles R Greathouse IV, Sep 07 2011
(PARI) sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021
(Magma) R := RealField(105);
c := &+[R|(EulerPhi(n)-MoebiusMu(n))/n*Log(ZetaFunction(R, n)):n in[2..360]];
Reverse(IntegerToSequence(Floor(c*10^103))); // Jason Kimberley, Jan 12 2017
CROSSREFS
Cf. A152447 (over the semiprimes), A000040, A000720, A001248, A072102, A077761, A083342, A179119, A246547.
Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Sequence in context: A021568 A374956 A199613 * A264806 A197843 A211074
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Mar 09 2008
EXTENSIONS
More terms from D. S. McNeil, Sep 06 2011
More digits from Jean-François Alcover, Sep 02 2015
STATUS
approved