login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374956
Decimal expansion of Muder's 1993 upper bound for the density of packing of unit spheres in the Euclidean 3-space.
1
7, 7, 3, 0, 5, 5, 8, 9, 6, 5, 7, 6, 9, 0, 8, 8, 9, 0, 5, 5, 0, 2, 1, 7, 5, 5, 7, 0, 1, 5, 2, 9, 0, 4, 7, 3, 0, 8, 2, 6, 2, 4, 5, 1, 7, 5, 2, 1, 6, 2, 4, 9, 3, 4, 1, 8, 3, 0, 4, 3, 9, 6, 5, 6, 2, 4, 8, 8, 9, 2, 7, 5, 9, 6, 8, 6, 5, 0, 8, 8, 8, 0, 5, 0, 9, 1, 0, 5, 2, 5
OFFSET
0,1
COMMENTS
See A374772 for an improved bound.
LINKS
Douglas J. Muder, A New Bound on the Local Density of Sphere Packings, Discrete & Computational Geometry, Vol. 10, 1993, pp. 351-375.
FORMULA
Equals 4*Pi/(39*beta), where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Corollary in Muder (1993), p. 352.
Equals (4/3)*Pi/A374955.
EXAMPLE
0.77305589657690889055021755701529047308262451752162...
MATHEMATICA
Module[{beta, r, s},
s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
RealDigits[4*Pi/(39*beta), 10, 100][[1, 1]]]
CROSSREFS
Cf. A374772, A374837, A374955 (volume).
Sequence in context: A318302 A266271 A021568 * A199613 A136141 A264806
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Jul 25 2024
STATUS
approved