login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374955
Decimal expansion of Muder's 1993 lower bound for the volume of any Voronoi polyhedron defined by a packing of unit spheres in the Euclidean 3-space.
1
5, 4, 1, 8, 4, 8, 2, 9, 6, 2, 6, 6, 0, 7, 2, 3, 2, 9, 4, 1, 4, 4, 5, 7, 2, 5, 2, 0, 9, 3, 2, 4, 6, 4, 5, 2, 7, 8, 1, 8, 3, 0, 9, 5, 5, 8, 9, 9, 8, 2, 2, 5, 7, 2, 5, 6, 3, 7, 3, 1, 6, 4, 4, 7, 5, 3, 5, 9, 9, 8, 3, 8, 9, 9, 2, 1, 6, 9, 9, 6, 0, 3, 8, 8, 7, 9, 8, 6, 2, 8
OFFSET
1,1
COMMENTS
See A374753 (the dodecahedral conjecture) for an improved bound.
LINKS
Douglas J. Muder, A New Bound on the Local Density of Sphere Packings, Discrete & Computational Geometry, Vol. 10, 1993, pp. 351-375.
FORMULA
Equals 13*beta, where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Theorem in Muder (1993), p. 352.
Equals (4/3)*Pi/A374956.
EXAMPLE
5.4184829626607232941445725209324645278183095589982...
MATHEMATICA
Module[{beta, r, s},
s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
RealDigits[13*beta, 10, 100][[1, 1]]]
CROSSREFS
Cf. A374771, A374753, A374956 (density).
Sequence in context: A258639 A072222 A197001 * A308714 A213055 A005752
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Jul 25 2024
STATUS
approved