login
A374772
Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.
7
7, 5, 4, 6, 9, 7, 3, 9, 9, 3, 3, 7, 4, 0, 5, 8, 3, 0, 3, 9, 1, 6, 5, 2, 1, 0, 5, 9, 9, 0, 2, 2, 9, 3, 3, 1, 3, 4, 2, 4, 3, 2, 1, 9, 2, 1, 4, 5, 9, 4, 3, 4, 2, 8, 4, 7, 6, 5, 8, 3, 5, 9, 2, 0, 5, 6, 1, 5, 8, 6, 6, 4, 5, 0, 7, 3, 0, 3, 9, 0, 5, 3, 0, 3, 3, 2, 7, 4, 6, 8
OFFSET
0,1
COMMENTS
See A374753 for more information on the dodecahedral conjecture.
LINKS
Eric Weisstein's World of Mathematics, Local Density.
FORMULA
Equals (4/3)*Pi/A374753 = 10*A019699/A374753.
Equals Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)).
Equals 4*Pi/A374755.
EXAMPLE
0.7546973993374058303916521059902293313424321921459...
MATHEMATICA
First[RealDigits[Pi*Sqrt[5 + Sqrt[5]]/(15*Sqrt[10]*(Sqrt[5] - 2)), 10, 100]]
CROSSREFS
Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374771, A374837, A374838.
Sequence in context: A112407 A154195 A280870 * A019858 A289032 A289005
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Jul 19 2024
STATUS
approved