login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093825
Decimal expansion of Pi/(3*sqrt(2)).
21
7, 4, 0, 4, 8, 0, 4, 8, 9, 6, 9, 3, 0, 6, 1, 0, 4, 1, 1, 6, 9, 3, 1, 3, 4, 9, 8, 3, 4, 3, 4, 4, 8, 9, 4, 9, 7, 6, 9, 1, 0, 3, 6, 1, 4, 8, 9, 5, 9, 4, 8, 3, 7, 0, 5, 1, 4, 2, 3, 2, 6, 0, 1, 1, 5, 9, 4, 0, 5, 7, 9, 8, 8, 4, 9, 9, 1, 2, 3, 1, 8, 4, 2, 9, 2, 2, 1, 1, 5, 5, 7, 9, 4, 1, 2, 7, 5, 3, 9, 5, 6, 0
OFFSET
0,1
COMMENTS
Density of densest packing of equal spheres in three dimensions (achieved for example by the fcc lattice).
Atomic packing factor (APF) of the face-centered-cubic (fcc) and the hexagonal-close-packed (hcp) crystal lattices filled with spheres of the same diameter. - Stanislav Sykora, Sep 29 2014
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. 15, line n = 3.
Clifford A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (2009), at p. 126.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.
LINKS
James Grime and Brady Haran, The Best Way to Pack Spheres, Numberphile video (2018).
J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
Thomas C. Hales, Dense Sphere Packings, Cambridge University Press, 2012.
G. Nebe and N. J. A. Sloane, Home page for fcc lattice.
N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
Eric Weisstein's World of Mathematics, Cubic Close Packing.
Eric Weisstein's World of Mathematics, Ellipsoid Packing.
Eric Weisstein's World of Mathematics, Sphere Packing.
FORMULA
Equals A019670*A010503. - R. J. Mathar, Feb 05 2009
EXAMPLE
0.74048048969306104116931349834344894976910361489594837...
MATHEMATICA
RealDigits[Pi/(3 Sqrt[2]), 10, 120][[1]] (* Harvey P. Dale, Feb 03 2012 *)
PROG
(PARI) default(realprecision, 20080); x=10*Pi*sqrt(2)/6; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093825.txt", n, " ", d)); \\ Harry J. Smith, Jun 18 2009
(PARI) Pi/sqrt(18) \\ Charles R Greathouse IV, May 11 2017
CROSSREFS
Cf. A093824.
Cf. APF's of other crystal lattices: A019673 (simple cubic), A247446 (diamond cubic).
Cf. A161686 (continued fraction).
Sequence in context: A175998 A329091 A306398 * A229784 A374814 A091494
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Apr 16 2004
EXTENSIONS
Entry revised by N. J. A. Sloane, Feb 10 2013
STATUS
approved