login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329091
Decimal expansion of Sum_{k>=1} 1/(k^2+3).
13
7, 4, 0, 2, 6, 7, 0, 7, 6, 5, 8, 1, 8, 5, 0, 7, 8, 2, 5, 8, 0, 6, 0, 2, 9, 6, 4, 8, 2, 4, 8, 1, 1, 9, 7, 7, 9, 4, 3, 1, 0, 9, 3, 0, 2, 3, 8, 5, 4, 5, 1, 2, 4, 5, 6, 2, 7, 0, 3, 5, 4, 1, 8, 6, 2, 5, 3, 3, 4, 1, 8, 9, 8, 5, 1, 2, 3, 0, 1, 2, 6, 5, 5, 2, 5, 1, 4, 9, 1, 6, 1
OFFSET
0,1
COMMENTS
In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives f(3).
FORMULA
Equals (-1 + (sqrt(3)*Pi)*coth(sqrt(3)*Pi))/6 = (-1 + (sqrt(-3)*Pi)*cot(sqrt(-3)*Pi))/6.
EXAMPLE
Sum_{k>=1} 1/(k^2+3) = 0.74026707658185078258...
MATHEMATICA
RealDigits[(-1 + Sqrt[3]*Pi*Coth[Sqrt[3]*Pi])/6, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
PROG
(PARI) default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(3)
(PARI) sumnumrat(1/(x^2+3), 1) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), this sequence (f(3)), A329092 (f(4)), A329093 (f(5)).
Sequence in context: A221388 A303982 A175998 * A306398 A093825 A229784
KEYWORD
nonn,cons
AUTHOR
Jianing Song, Nov 04 2019
STATUS
approved