This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329086 Decimal expansion of Sum_{k>=0} 1/(k^2+5). 13
 8, 0, 2, 4, 8, 2, 5, 8, 4, 8, 0, 6, 7, 8, 6, 8, 8, 6, 8, 3, 5, 8, 4, 4, 9, 5, 4, 4, 8, 6, 5, 5, 7, 7, 0, 9, 4, 0, 7, 1, 6, 0, 7, 2, 9, 7, 9, 0, 5, 7, 0, 1, 3, 6, 4, 1, 9, 8, 5, 9, 5, 9, 3, 9, 6, 0, 9, 4, 0, 1, 4, 9, 5, 4, 0, 5, 3, 4, 0, 8, 0, 4, 5, 5, 2, 9, 1, 0, 9, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have: F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0. This sequence gives F(5). This and A329093 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329093. LINKS FORMULA Sum_{k>=0} 1/(k^2+5) = (1 + (sqrt(5)*Pi)*coth(sqrt(5)*Pi))/10 = (1 + (sqrt(-5)*Pi)*cot(sqrt(-5)*Pi))/10. EXAMPLE Sum_{k>=0} 1/(k^2+5) = 0.80248258480678688683... PROG (PARI) default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(5) CROSSREFS Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), this sequence (F(5)). Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)). Sequence in context: A232227 A322231 A261168 * A265294 A062522 A117888 Adjacent sequences:  A329083 A329084 A329085 * A329087 A329088 A329089 KEYWORD nonn,cons AUTHOR Jianing Song, Nov 04 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 20:45 EST 2019. Contains 329779 sequences. (Running on oeis4.)