login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329086
Decimal expansion of Sum_{k>=0} 1/(k^2+5).
13
8, 0, 2, 4, 8, 2, 5, 8, 4, 8, 0, 6, 7, 8, 6, 8, 8, 6, 8, 3, 5, 8, 4, 4, 9, 5, 4, 4, 8, 6, 5, 5, 7, 7, 0, 9, 4, 0, 7, 1, 6, 0, 7, 2, 9, 7, 9, 0, 5, 7, 0, 1, 3, 6, 4, 1, 9, 8, 5, 9, 5, 9, 3, 9, 6, 0, 9, 4, 0, 1, 4, 9, 5, 4, 0, 5, 3, 4, 0, 8, 0, 4, 5, 5, 2, 9, 1, 0, 9, 3, 9
OFFSET
0,1
COMMENTS
In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(5).
This and A329093 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329093.
FORMULA
Sum_{k>=0} 1/(k^2+5) = (1 + (sqrt(5)*Pi)*coth(sqrt(5)*Pi))/10 = (1 + (sqrt(-5)*Pi)*cot(sqrt(-5)*Pi))/10.
EXAMPLE
Sum_{k>=0} 1/(k^2+5) = 0.80248258480678688683...
MATHEMATICA
RealDigits[(1 + Sqrt[5]*Pi*Coth[Sqrt[5]*Pi])/10, 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
PROG
(PARI) default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(5)
(PARI) sumnumrat(1/(x^2+5), 0) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), this sequence (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).
Sequence in context: A232227 A322231 A261168 * A342200 A265294 A062522
KEYWORD
nonn,cons
AUTHOR
Jianing Song, Nov 04 2019
STATUS
approved