login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113319
Decimal expansion of Sum_{k>=0} 1/(k^2+1).
26
2, 0, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5, 6, 5, 5, 5, 1, 7, 5, 9, 3, 9, 5, 4, 9, 1, 8, 7, 6, 5, 1
OFFSET
1,1
COMMENTS
Known to be transcendental. After n=2 it is the same as A100554(n).
Imaginary part of psi(I) (for the real part, see A248177). - Stanislav Sykora, Oct 03 2014
REFERENCES
Michel Waldschmidt, Elliptic functions and transcendance, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008.
FORMULA
Equals 1/2 + Pi / tanh(Pi) / 2.
Equals 1+Integral_{x >= 0} sin(x)/(exp(x)-1) dx. - Robert FERREOL, Jan 12 2016.
EXAMPLE
2.076674047468581174134050794750000490445656266403816665575062484390...
MATHEMATICA
RealDigits[N[Im[PolyGamma[0, I]], 105]][[1]] (* Vaclav Kotesovec, Oct 03 2014 *)
PROG
(PARI) 1/2+Pi/tanh(Pi)/2
(PARI) imag(psi(I)) \\ - Stanislav Sykora, Oct 03 2014
(PARI) sumnumrat(1/(x^2+1), 0) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A013661 (Sum_{i>=1} 1/i^2), A232883 (Sum_{i>=0} 1/(2*i^2+1)). - Bruno Berselli, Dec 02 2013
Cf. A248177.
Essentially the same as A100554 and A259171.
Sequence in context: A104540 A178818 A354615 * A298749 A021832 A352615
KEYWORD
nonn,cons
AUTHOR
Benoit Cloitre, Jan 07 2006
EXTENSIONS
Offset changed from 0 to 1 by Bruno Berselli, Dec 02 2013
STATUS
approved