login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104540
Decimal expansion of lambda(3) in Li's criterion.
19
2, 0, 7, 6, 3, 8, 9, 2, 0, 5, 5, 4, 3, 2, 4, 8, 0, 3, 7, 9, 1, 4, 9, 2, 0, 4, 6, 6, 1, 7, 8, 0, 3, 2, 0, 6, 9, 8, 2, 6, 3, 6, 0, 7, 9, 1, 7, 9, 6, 0, 0, 7, 3, 0, 8, 5, 2, 4, 4, 8, 1, 2, 4, 4, 9, 0, 1, 5, 0, 8, 8, 5, 1, 7, 8, 5, 4, 8, 3, 6, 6, 0, 9, 6, 1, 0, 9, 5, 1, 7, 5, 0, 0, 0, 2, 1, 3, 7, 5, 7, 4, 8
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.32, p. 204.
LINKS
E. Bombieri and J. C. Lagarias, Complements to Li's Criterion for the Riemann Hypothesis, J. Number Th. 77(2) (1999), 274-287.
M. W. Coffey, Relations and positivity results for derivatives of the Riemann xi function, J. Comput. Appl. Math. 166(2) (2004), 525-534.
Xian-Jin Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Th. 65(2) (1997), 325-333.
Eric Weisstein's World of Mathematics, Li's Criterion.
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
Wikipedia, Li's criterion.
FORMULA
lambda(3) = 3*Pi^2/8 - 3*log(2) - 3*log(Pi)/2 + 3*gamma/2 - 3*gamma^2 + gamma^3 + 3*gamma*gamma(1) - 6*gamma(1) + 3*gamma(2)/2 - 7*zeta(3)/8 + 1. - Jean-François Alcover, Jul 02 2014
EXAMPLE
0.207638920...
MATHEMATICA
lambda[n_] := Limit[D[s^(n - 1) Log[RiemannXi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[3], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 3 e/2 - 3 e^2 + e^3 + 3 Pi^2/8 - 6 g[1] + 3 e g[1] + 3 g[2]/2 - Log[8] - 3 Log[Pi]/2 - 7 Zeta[3]/8], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)
CROSSREFS
Cf. A074760 (lambda_1), A104539 (lambda_2), A104541 (lambda_4), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).
Sequence in context: A351727 A337450 A228819 * A178818 A354615 A113319
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Mar 13 2005
STATUS
approved