login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104538
Expansion of g.f. (1 + 2*x) / (1 + 2*x + 4*x^2).
3
1, 0, -4, 8, 0, -32, 64, 0, -256, 512, 0, -2048, 4096, 0, -16384, 32768, 0, -131072, 262144, 0, -1048576, 2097152, 0, -8388608, 16777216, 0, -67108864, 134217728, 0, -536870912, 1073741824, 0, -4294967296, 8589934592, 0, -34359738368, 68719476736, 0, -274877906944, 549755813888, 0
OFFSET
0,3
FORMULA
a(n) = 2^n*A057078(n), where A057078(n) = U(2n, 1/2), U(n, x) Chebyshev polynomial of second kind.
a(n) = b(n) + b(n+1) where b(n) = 0, 1, -1, -3, 11, -11, -21, 85, -85, ... is the inverse binomial transform of A287479(n). - Paul Curtz, Aug 05 2018
a(n) = (((-1+i*sqrt(3))^n*(-i+sqrt(3)) + (-1-i*sqrt(3))^n*(i+sqrt(3)))) / (2*sqrt(3)) where i=sqrt(-1). - Colin Barker, Aug 08 2018
E.g.f.: exp(-x)*(sqrt(3)*cos(sqrt(3)*x) + sin(sqrt(3)*x))/sqrt(3). - Stefano Spezia, Jul 15 2024
MATHEMATICA
CoefficientList[Series[(1+2x)/(1+2x+4x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[ {-2, -4}, {1, 0}, 50] (* Harvey P. Dale, Sep 18 2022 *)
PROG
(PARI) a(n) = 2^n*polchebyshev(2*n, 2, 1/2); \\ Michel Marcus, Aug 05 2018
(PARI) Vec((1 + 2*x) / (1 + 2*x + 4*x^2) + O(x^40)) \\ Colin Barker, Aug 08 2018
CROSSREFS
Sequence in context: A198583 A244123 A280652 * A120580 A205508 A013328
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 13 2005
STATUS
approved