login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104537
Expansion of g.f.: (1+x)/(1+2*x+4x^2).
4
1, -1, -2, 8, -8, -16, 64, -64, -128, 512, -512, -1024, 4096, -4096, -8192, 32768, -32768, -65536, 262144, -262144, -524288, 2097152, -2097152, -4194304, 16777216, -16777216, -33554432, 134217728, -134217728, -268435456, 1073741824, -1073741824, -2147483648, 8589934592
OFFSET
0,3
COMMENTS
a(n+1) is the Hankel transform of C(2n,n)-C(2n+2,n+1). - Paul Barry, Mar 14 2008
a(n+1) is the Hankel transform of C(2n,n)-2*C(n)=((n-1)/(n+1))*C(2n,n), where C(n)=A000108(n). - Paul Barry, Mar 14 2008
FORMULA
G.f.: (1+x)/(1+2*x+4x^2).
a(n) = -2*a(n-1) - 4*a(n-2).
a(n) = 2^n*cos(2*Pi*n/3).
a(n) = Sum_{k=0..n} A098158(n,k)*(-1)^k*3^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = (3^n/2^n)*Product_{i=1..n} (1/3 - tan((i-1/2)*Pi/(2*n))^2). - Gerry Martens, May 26 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = b(n) + b(n-1) where b(n) = 2^n*A049347(n). - R. J. Mathar, May 21 2019
Sum_{n>=0} 1/a(n) = -4/7. - Amiram Eldar, Feb 14 2023
MAPLE
A104537:=n->2^n*cos(2*Pi*n/3): seq(A104537(n), n=0..40); # Wesley Ivan Hurt, Nov 16 2014
MATHEMATICA
CoefficientList[Series[(1 + x) / (1 + 2 x + 4 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *)
LinearRecurrence[{-2, -4}, {1, -1}, 40] (* Harvey P. Dale, Dec 02 2019 *)
PROG
(Magma) I:=[1, -1]; [n le 2 select I[n] else -2*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2014
CROSSREFS
Sequence in context: A079458 A281914 A290378 * A128018 A138230 A019240
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 13 2005
STATUS
approved