login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104542 Decimal expansion of lambda(5) in Li's criterion. 15
5, 7, 5, 5, 4, 2, 7, 1, 4, 4, 6, 1, 1, 7, 7, 4, 5, 2, 4, 3, 1, 1, 0, 6, 4, 0, 5, 4, 9, 2, 8, 6, 3, 8, 3, 3, 5, 6, 7, 4, 5, 6, 6, 1, 5, 1, 7, 9, 7, 9, 9, 5, 3, 9, 5, 2, 9, 2, 4, 7, 5, 8, 1, 9, 3, 5, 9, 5, 4, 5, 2, 1, 3, 8, 3, 6, 2, 3, 6, 4, 0, 7, 8, 1, 9, 0, 1, 6, 3, 1, 0, 0, 5, 4, 8, 5, 8, 9, 4, 7, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..101.

E. Bombieri and J. C. Lagarias, Complements to Li's Criterion for the Riemann Hypothesis, J. Number Th. 77(2) (1999), 274-287.

M. W. Coffey, Relations and positivity results for derivatives of the Riemann xi function, J. Comput. Appl. Math. 166(2) (2004), 525-534.

Xian-Jin Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Th. 65(2) (1997), 325-333.

Eric Weisstein's World of Mathematics, Li's Criterion.

Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.

Wikipedia, Li's criterion.

FORMULA

lambda(5) = 5*Pi^2/4 + 5*Pi^4/96 - 5*log(4)/2 - 5*log(Pi)/2 + 5*gamma/2 - 10*gamma^2 + 10*gamma^3 - 5*gamma^4+gamma^5 - 20*gamma(1) + 30*gamma*gamma(1) - 20*gamma^2*gamma(1) + 5*gamma^3*gamma(1) - 10*gamma(1)^2 + 5*gamma*gamma(1)^2 + 15*gamma(2) - 10*gamma*gamma(2) + 5/2*gamma^2*gamma(2) + 5/2*gamma(1)*gamma(2) - 10*gamma(3)/3 + 5/6*gamma*gamma(3) + 5*gamma(4)/24 - 35*zeta(3)/4 - 31*zeta(5)/32+1. - Jean-François Alcover, Jul 02 2014

EXAMPLE

0.575542714...

MATHEMATICA

lambda[n_] := Limit[D[s^(n - 1)*Log[xi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[5], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)

RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 5 e/2 - 10 e^2 + 10 e^3 - 5 e^4 + e^5 + 5 Pi^2/4 + (5 Pi^4)/96 - 20 g[1] + 30 e g[1] - 20 e^2 g[1] + 5 e^3 g[1] - 10 g[1]^2 + 5 e g[1]^2 + 15 g[2] - 10 e g[2] + 5/2 e^2 g[2] + 5/2 g[1] g[2] - 10 g[3]/3 + 5/6 e g[3] + 5 g[4]/24 - Log[32] - 5 Log[Pi]/2 - 35 Zeta[3]/4 - 31 Zeta[5]/32], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)

CROSSREFS

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4).

Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Sequence in context: A198744 A201944 A165242 * A161376 A107437 A317083

Adjacent sequences:  A104539 A104540 A104541 * A104543 A104544 A104545

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Mar 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 01:53 EDT 2021. Contains 347478 sequences. (Running on oeis4.)