The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165242 The larger member of the n-th twin prime pair, modulo 8. 1
 5, 7, 5, 3, 7, 3, 5, 1, 7, 5, 3, 7, 5, 1, 7, 5, 1, 7, 3, 1, 5, 5, 1, 7, 3, 3, 1, 3, 3, 5, 3, 7, 5, 3, 3, 5, 1, 3, 7, 5, 1, 7, 7, 3, 7, 1, 5, 5, 3, 1, 1, 5, 5, 3, 3, 5, 1, 7, 5, 7, 7, 5, 3, 1, 1, 3, 7, 7, 5, 7, 5, 7, 7, 1, 3, 1, 1, 3, 7, 3, 3, 1, 1, 1, 5, 3, 5, 3, 1, 5, 7, 7, 5, 1, 5, 7, 7, 1, 1, 7, 5, 7, 3, 3, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Related to the rank of some elliptic curves by the conjecture on page 2 of [Hatley]: Let E_p be the elliptic curve defined by y^2 = x(x-p)(x-2) where p and p-2 are twin primes. Then Rank(E_p) = 0 if p == 7 (mod 8), 1 if p == 3,5 (mod 8), 2 if p == 1 (mod 8). REFERENCES Joseph H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986. LINKS Table of n, a(n) for n=1..105. Jeffrey Hatley, On the Rank of the Elliptic Curve y^2=x(x-p)(x-2), arXiv:0909.1614 [math.NT], 2009. FORMULA a(n) = A010877(A006512(n)). MAPLE A006512 := proc(n) if n = 1 then 5; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a-2) then RETURN(a) ; fi; od: fi; end: A165242 := proc(n) A006512(n) mod 8 ; end: seq(A165242(n), n=1..120) ; # R. J. Mathar, Sep 16 2009 MATHEMATICA Mod[#, 8]&/@(Select[Partition[Prime[Range[800]], 2, 1], #[[2]]-#[[1]]==2&][[All, 2]]) (* Harvey P. Dale, Sep 26 2016 *) CROSSREFS Cf. A000040, A001359, A010877. Sequence in context: A178668 A198744 A201944 * A104542 A161376 A107437 Adjacent sequences: A165239 A165240 A165241 * A165243 A165244 A165245 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Sep 09 2009 EXTENSIONS Redefined for the larger member of twin primes by R. J. Mathar, Sep 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 12:14 EDT 2024. Contains 375092 sequences. (Running on oeis4.)