|
|
A113320
|
|
a(1)=1 and a(n) for n>1 has the smallest positive value such that Sum_{i=1..n} a(i)^a(n-i+1) is prime.
|
|
8
|
|
|
1, 1, 1, 2, 2, 4, 4, 4, 6, 2, 6, 4, 18, 6, 4, 20, 6, 30, 4, 40, 30, 8, 18, 16, 40, 128, 24, 40, 58, 194, 78, 84, 56, 56, 72, 112, 98, 300, 444, 54, 978, 1938, 120, 126, 6, 1750
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Previous name was: Least integers so ascending descending base exponent transforms all prime.
This is the first sequence submitted as a solution to an "ascending descending base exponent transform inverse problem" where the sequence is iteratively defined such that the transform meets a constraint. The sequence is infinite, but it is hard to characterize the asymptotic cost of adding an n-th term. A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154.
|
|
LINKS
|
|
|
FORMULA
|
a(1) = 1. For n>1, a(n) = min {k>0: a(1)^k + k^a(1) + Sum_{i=2..n-1} a(i)^a(n-i+1) is prime}.
|
|
EXAMPLE
|
a(1) = 1 by definition.
a(2) = 1 because 1 is the min such that 1^a(2) + a(2)^1 is prime (p=2).
a(3) = 1 because 1 is the min such that 1^a(3) + 1^1 + a(3)^1 is prime (p=5).
a(4) = 2 because 2 is the min such that 1^a(4) + 1^1 + 3^1 + a(4)^1 is prime (p=7).
|
|
MATHEMATICA
|
inve[w_] := Total[w^Reverse[w]]; a[1] = 1; a[n_] := a[n] = Block[{k = 0}, While[! PrimeQ[ inve@ Append[Array[a, n-1], ++k]]]; k]; Array[a, 46] (* Giovanni Resta, Jun 13 2016 *)
|
|
PROG
|
(PARI) lista(n)={my(a=vector(n)); a[1]=1; print1(1, ", "); for(n=2, #a, my(t=sum(i=2, n-1, a[i]^a[n-i+1])); my(k=1); while(!ispseudoprime(t+1+k), k++); a[n]=k; print1(k, ", "))} \\ Andrew Howroyd, Jan 03 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|