

A113318


Numbers whose biquadrates (fourth powers) are exclusionary.


1



2, 3, 4, 7, 8, 9, 24, 27, 28, 32, 42, 52, 53, 58, 59, 67, 89, 93, 203, 258, 284, 324, 329, 832, 843, 2673
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The number m with no repeated digits has an exclusionary fourth power m^4 if the latter is made up of digits not appearing in m. Is a subsequence of A111116. Conjectured to be complete. For the corresponding exclusionary biquadrates m^4, see A113317.


REFERENCES

H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 3469, Journal of Recreational Mathematics, Vol. 32 No.4 20034 Baywood NY.


LINKS



MATHEMATICA

ebQ[n_]:=Max[DigitCount[n]]==1&&Intersection[IntegerDigits[n], IntegerDigits[ n^4]]=={}; Select[Range[3000], ebQ] (* Harvey P. Dale, Aug 21 2013 *)


CROSSREFS



KEYWORD

base,nonn,fini


AUTHOR



STATUS

approved



