login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113122
Sum of the first n Fibonacci numbers, in ascending order, as bases, with the same, in descending order, as exponents.
18
1, 2, 4, 7, 14, 32, 107, 724, 18616, 4117597, 28878084584, 53183366452504936, 794001316484619940422835765, 25210343943654420841949267608211227900299990, 14311021641196256564899251685012421154803682074917148917844556724305980
OFFSET
1,2
COMMENTS
Primes begin a(2) = 2, a(4) = 7, a(7) = 107; what is the next prime? This transform can be reflexively applied to any integer sequence which does not give an indeterminate 0^0 term.
FORMULA
a(n) = Sum_{i=1..n} F(i)^F(n-i+1).
EXAMPLE
a(1) = F(1)^F(1) = 1^1 = 1.
a(2) = F(1)^F(2) + F(2)^F(1) = 1^1 + 1^1 = 2.
a(3) = F(1)^F(3) + F(2)^F(2) + F(3)^F(1) = 1^2 + 1^1 + 2^1 = 4.
a(4) = F(1)^F(4) + F(2)^F(3) + F(3)^F(2) + F(4)^F(1) = 1^3 + 1^2 + 2^1 + 3^1 = 7.
a(5) = 1^5 + 1^3 + 2^2 + 3^1 + 5^1 = 14.
a(6) = 1^8 + 1^5 + 2^3 + 3^2 + 5^1 + 8^1 = 32.
a(7) = 1^13 + 1^8 + 2^5 + 3^3 + 5^2 + 8^1 + 13^1 = 107.
a(8) = 1^21 + 1^13 + 2^8 + 3^5 + 5^3 + 8^2 + 13^1 + 21^1 = 724.
a(9) = 1^34 + 1^21 + 2^13 + 3^8 + 5^5 + 8^3 + 13^2 + 21^1 + 34^1 = 18616.
a(10) = 1^55 + 1^34 + 2^21 + 3^13 + 5^8 + 8^5 + 13^3 + 21^2 + 34^1 + 55^1 = 4117597.
a(11) = 1^89 + 1^55 + 2^34 + 3^21 + 5^13 + 8^8 + 13^5 + 21^3 + 34^2 + 55^1 + 89^1 = 28878084584.
a(12) = 1^144 + 1^89 + 2^55 + 3^34 + 5^21 + 8^13 + 13^8 + 21^5 + 34^3 + 55^2 + 89^1 + 144^1 = 53183366452504936.
a(13) = 1^233 + 1^144 + 2^89 + 3^55 + 5^34 + 8^21 + 13^13 + 21^8 + 34^5 + 55^3 + 89^2 + 144^1 + 233^1 = 794001316484619940422835765.
a(14) = 1^377 + 1^233 + 2^144 + 3^89 + 5^55 + 8^34 + 13^21 + 21^13 + 34^8 + 55^5 + 89^3 + 144^2 + 233^1 + 377^1 = 25210343943654420841949267608211227900299990.
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> add(F(i)^F(n-i+1), i=1..n):
seq(a(n), n=1..16); # Alois P. Heinz, Aug 09 2018
MATHEMATICA
Table[Sum[(Fibonacci[k])^((Fibonacci[n - k + 1]), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
PROG
(PARI) for(n=1, 10, print1(sum(k=1, n, (fibonacci(k))^(fibonacci(n-k+1))), ", ")) \\ G. C. Greubel, May 18 2017
CROSSREFS
Cf. A000045.
Sequence in context: A074663 A325303 A356781 * A296984 A116584 A152477
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 04 2006
STATUS
approved