OFFSET
0,2
COMMENTS
For real b, Im(psi(b*i)) = 1/(2*b) + Pi*coth(Pi*b)/2, but no such closed formula is known for the real part (see Wikipedia link). - Vaclav Kotesovec, Dec 24 2020
LINKS
Stanislav Sykora, Table of n, a(n) for n = -1..2000
Wikipedia, Digamma function.
FORMULA
psi(i) = -EulerGamma - Sum_{k>=0} ((k-1)/(k+1)/(k^2+1)) + A113319*i, where EulerGamma is the Euler-Mascheroni constant (A001620).
Equals 3/4 - EulerGamma - 2*Sum_{k>=2} 1/(k*(k^4 - 1)). - Vaclav Kotesovec, Dec 24 2020
From Amiram Eldar, May 20 2022: (Start)
Equals Sum_{n>=1} 1/(n^3+n) - EulerGamma.
Equals 1/2 - EulerGamma + Sum_{n>=1} (-1)^(n+1) * (zeta(2*n+1) - 1). (End)
EXAMPLE
0.09465032062247697727187848272191072247626297176354162323298972411890...
MAPLE
Re(Psi(I)) ; evalf(%) ; # R. J. Mathar, Oct 18 2019
MATHEMATICA
RealDigits[N[Re[PolyGamma[0, I]], 105]][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
PROG
(PARI) real(psi(I))
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, Oct 03 2014
STATUS
approved