OFFSET
1,2
REFERENCES
J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.q', p. 247.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..1000
FORMULA
Equals Sum_{h >= 0} 1/binomial(2*h+1, h).
From Amiram Eldar, Nov 16 2021: (Start)
Equals 1 + Integral_{x>=0} 1/(x^2 + x + 1)^2 dx.
Equals 1 + Integral_{x>=1} 1/(x^2 - x + 1)^2 dx.
Equals Integral_{x=0..1} 1/(x^2 - x + 1)^2 dx. (End)
From Bernard Schott, Mar 18 2022: (Start)
Equals 2 * Sum_{n >= 1} (n!)^2/(2*n)!.
Equals 2 * A073016.
Equals hypergeometric function 2F1([1, 2], [3/2], x) at x=1/4. (End)
EXAMPLE
1.472799717437430155819590336729846992126251665818995811364393304616943...
MATHEMATICA
r = 2/27 (9 + 2 Sqrt[3] \[Pi]); u = RealDigits[N[r, 200]][[1]]
PROG
(PARI) 2*(9+sqrt(12)*Pi)/27 \\ Charles R Greathouse IV, Sep 28 2022
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Oct 03 2014
STATUS
approved