OFFSET
0,4
COMMENTS
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..3000
EXAMPLE
Let s(n) = sum{1/C(2h+1,h), h = 0..n}. Approximations are shown here:
n ... r - s(n) ..... 1/2^n
0 ... 0.47289 ...... 1
1 ... 0.139466 ..... 0.5
2 ... 0.0394664 .... 0.25
3 ... 0.010895 ..... 0.125
4 ... 0.00295845 ... 0.0625
a(3) = 2 because r - s(2) < 1/8 < r - s(1).
MATHEMATICA
$MaxExtraPrecision = Infinity;
z = 300; p[k_] := p[k] = Sum[1/Binomial[2 h + 1, h], {h, 0, k}] ;
r = Sum[1/Binomial[2 h + 1, h], {h, 0, Infinity}] (* A248179 *)
r = 2/27 (9 + 2 Sqrt[3] \[Pi]); N[r, 20]
N[Table[r - p[n], {n, 0, z/10}]]
f[n_] := f[n] = Select[Range[z], r - p[#] < 1/2^n &, 1]
u = Flatten[Table[f[n], {n, 0, z}]] (* A248180 *)
Flatten[Position[Differences[u], 0]] (* A248195 *)
Flatten[Position[Differences[u], 1]] (* A248196 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 03 2014
STATUS
approved