login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350893
Number of partitions of n such that (smallest part) = 2*(number of parts).
6
0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 10, 10, 12, 13, 15, 16, 19, 20, 23, 25, 28, 30, 34, 36, 40, 43, 47, 50, 56, 59, 65, 70, 77, 82, 91, 97, 107, 115, 126, 135, 149, 159, 174, 187, 204, 218, 238, 254, 276, 295, 320, 341, 370, 394, 426, 455, 491, 523, 565
OFFSET
1,18
FORMULA
G.f.: Sum_{k>=1} x^(2*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(2*log(alfa)^2 + polylog(2, 1 - alfa)))) * (2*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(4 - 3*alfa) * n^(3/4)), where alfa = 0.72449195900051561158837228218703656578649448135... is positive real root of the equation alfa^4 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 21 2022
MATHEMATICA
nmax = 100; Rest[CoefficientList[1 + Series[Sum[x^(2*j^2)*(1 - x^j)/Product[1 - x^i, {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 21 2022 *)
PROG
(PARI) my(N=99, x='x+O('x^N)); concat(0, Vec(sum(k=1, sqrtint(N\2), x^(2*k^2)/prod(j=1, k-1, 1-x^j))))
CROSSREFS
Column 2 of A350890.
Sequence in context: A248180 A025161 A373068 * A021895 A025160 A026831
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved