login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237757
Number of partitions of n such that 2*(least part) = (number of parts).
25
0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 18, 22, 25, 30, 35, 41, 47, 56, 64, 75, 86, 100, 114, 133, 151, 174, 198, 227, 257, 295, 333, 379, 428, 486, 547, 620, 696, 786, 882, 993, 1111, 1250, 1396, 1565, 1747, 1954, 2176, 2431, 2703, 3013
OFFSET
1,8
LINKS
FORMULA
Conjectural g.f.: Sum_{n >= 0} q^(2*(n+1)^2)/Product_{k = 1..2*n+1} 1 - q^k. - Peter Bala, Feb 02 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jan 22 2022
EXAMPLE
a(8) = 2 counts these partitions: 71, 2222.
MAPLE
f:= proc(n) local t, k, np;
t:= 0;
for k from 1 do
np:= n - 1 - 2*k*(k-1);
if np < 2*k-1 then return t fi;
t:= t + combinat:-numbpart(np, 2*k-1) - combinat:-numbpart(np, 2*k-2)
od;
end proc:
map(f, [$1..100]); # Robert Israel, Jul 01 2020
MATHEMATICA
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] == Length[p]], {n, z}]
CROSSREFS
Cf. A237753.
Sequence in context: A286316 A027198 A238215 * A027197 A363221 A332577
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 13 2014
STATUS
approved