OFFSET
1,8
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
Conjectural g.f.: Sum_{n >= 0} q^(2*(n+1)^2)/Product_{k = 1..2*n+1} 1 - q^k. - Peter Bala, Feb 02 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jan 22 2022
EXAMPLE
a(8) = 2 counts these partitions: 71, 2222.
MAPLE
f:= proc(n) local t, k, np;
t:= 0;
for k from 1 do
np:= n - 1 - 2*k*(k-1);
if np < 2*k-1 then return t fi;
t:= t + combinat:-numbpart(np, 2*k-1) - combinat:-numbpart(np, 2*k-2)
od;
end proc:
map(f, [$1..100]); # Robert Israel, Jul 01 2020
MATHEMATICA
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] == Length[p]], {n, z}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 13 2014
STATUS
approved