|
|
A237759
|
|
Numbers n such that either n^2*2^n-1 or n^2*2^n+1 is prime, but not both.
|
|
0
|
|
|
1, 2, 4, 7, 21, 25, 30, 33, 41, 45, 57, 63, 83, 100, 131, 142, 144, 147, 150, 175, 198, 225, 304, 425, 449, 469, 513, 651, 782, 858, 1345, 1839, 1883, 1913, 2177, 2551, 2907, 3638, 3675, 6071, 6076, 9297, 11037, 11743, 12135, 12876, 14641, 38685, 40857
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
4 is in the sequence because 4^2*2^4 - 1 = 16*16 - 1 = 255 is not a prime number but 4^2*2^4 + 1 = 16*16 + 1 = 257 is a prime number.
|
|
PROG
|
(PARI) isok(n) = isp1 = isprime(2^n*n^2-1); isp2 = isprime(2^n*n^2+1); (isp1 || isp2 && !(isp1 && isp2)); \\ Michel Marcus, Mar 05 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,less
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|