

A237753


Number of partitions of n such that 2*(greatest part) = (number of parts).


4



0, 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 4, 5, 7, 7, 9, 12, 15, 17, 23, 27, 34, 42, 50, 60, 75, 87, 106, 128, 154, 182, 222, 260, 311, 369, 437, 515, 613, 716, 845, 993, 1166, 1361, 1599, 1861, 2176, 2534, 2950, 3422, 3983, 4605, 5339, 6174, 7136, 8227, 9500, 10928
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,8


COMMENTS

Also, the number of partitions of n such that (greatest part) = 2*(number of parts); hence, the number of partitions of n such that (rank + greatest part) = 0.


LINKS

Table of n, a(n) for n=1..57.


EXAMPLE

a(8) = 2 counts these partitions: 311111, 2222.


MATHEMATICA

z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] = = Length[p]], {n, z}]


CROSSREFS

Cf. A064173, A237751, A237752, A237754A237757.
Sequence in context: A239484 A058714 A057045 * A058700 A220237 A050040
Adjacent sequences: A237750 A237751 A237752 * A237754 A237755 A237756


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Feb 13 2014


STATUS

approved



