login
A168656
Number of partitions of n such that the smallest part is divisible by the number of parts.
10
1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 10, 11, 13, 15, 18, 20, 23, 25, 29, 33, 36, 41, 47, 53, 58, 66, 74, 83, 92, 103, 116, 130, 144, 160, 179, 199, 219, 243, 269, 298, 328, 362, 399, 441, 484, 533, 586, 645, 708, 778, 854, 937, 1026, 1124, 1230, 1347, 1470, 1607, 1756, 1917, 2089
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(k^2)/((1-x^(k^2)) * Product_{i=1..k-1} (1-x^i)).
a(n) ~ c * exp(2*Pi*sqrt(n/15)) / n^(3/4), where c = 1 / (2 * 3^(1/4) * sqrt(5) * phi^(3/2)) = 0.08255116908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 17 2024
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2)/((1 - x^(k^2))*Product[1 - x^j, {j, 1, k-1}]), {k, 1, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 16 2024 *)
PROG
(PARI)
N=100; x='x+O('x^N);
Vec( sum(k=1, sqrtint(N), x^(k^2)/(1-x^(k^2)) / prod(i=1, k-1, 1-x^i) ) )
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 01 2009, Dec 04 2009
STATUS
approved