OFFSET
1,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} x^(k^2)/((1-x^(k^2)) * Product_{i=1..k-1} (1-x^i)).
a(n) ~ c * exp(2*Pi*sqrt(n/15)) / n^(3/4), where c = 1 / (2 * 3^(1/4) * sqrt(5) * phi^(3/2)) = 0.08255116908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 17 2024
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2)/((1 - x^(k^2))*Product[1 - x^j, {j, 1, k-1}]), {k, 1, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 16 2024 *)
PROG
(PARI)
N=100; x='x+O('x^N);
Vec( sum(k=1, sqrtint(N), x^(k^2)/(1-x^(k^2)) / prod(i=1, k-1, 1-x^i) ) )
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 01 2009, Dec 04 2009
STATUS
approved