OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..9464 (terms 1..1000 from Alois P. Heinz)
FORMULA
G.f.: Sum_{n>=1} Sum_{d|n} x^(n*d)/Product_{k=1..n-1}(1-x^k).
G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j^2)/Product_{k=1..i*j-1} (1-x^k). - Seiichi Manyama, Jan 21 2022
From Vaclav Kotesovec, Oct 17 2024: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 13*Pi / (2^(7/2) * 3^(3/2))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(7/2) * n^(3/2)). (End)
MAPLE
b:= proc(n, i, t) option remember;
`if`(n<1, 0, `if`(i=1, 1, `if`(i<1, 0,
`if`(irem(n, i)=0 and irem(t+n/i, i)=0, 1, 0)+
add(b(n-i*j, i-1, t+j), j=0..n/i))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=1..60); # Alois P. Heinz, May 24 2012
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 0, If[i==1, 1, If[i<1, 0, If [Mod[n, i]==0 && Mod[t+n/i, i]==0, 1, 0] + Sum[b[n-i*j, i-1, t+j], {j, 0, n/i}]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, sqrtint(N\i), x^(i*j^2)/prod(k=1, i*j-1, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 02 2009
STATUS
approved