login
A079501
Number of compositions of the integer n with strictly smallest part in the first position.
8
1, 1, 2, 2, 4, 5, 8, 12, 19, 28, 45, 70, 110, 173, 275, 436, 695, 1107, 1769, 2831, 4537, 7276, 11683, 18774, 30194, 48592, 78247, 126062, 203192, 327645, 528518, 852815, 1376491, 2222294, 3588628, 5796196, 9363458, 15128631, 24447014, 39510108
OFFSET
1,3
COMMENTS
Also number of compositions of n such that the first part is divisible by the number of parts . [Vladeta Jovovic, Dec 02 2009]
REFERENCES
Arnold Knopfmacher and Neville Robbins, Compositions with parts constrained by the leading summand, Ars Combin. 76 (2005), 287-295.
LINKS
FORMULA
G.f.: Sum_{k>=1} (1-z)*z^k/(1-z-z^(k+1)).
G.f.: Sum_{k>=1} z^(2*k-1)/((1-z^k)*(1-z)^(k-1)), cf. A105039. - Vladeta Jovovic, Apr 05 2005
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-2). - Vaclav Kotesovec, May 01 2014
G.f.: Sum_{n>=1} q^n/(1-Sum_{k>=n+1} q^k). - Joerg Arndt, Jan 03 2024
EXAMPLE
The a(9)=19 such compositions of 9 are
[ 1] [ 1 2 2 2 2 ]
[ 2] [ 1 2 2 4 ]
[ 3] [ 1 2 3 3 ]
[ 4] [ 1 2 4 2 ]
[ 5] [ 1 2 6 ]
[ 6] [ 1 3 2 3 ]
[ 7] [ 1 3 3 2 ]
[ 8] [ 1 3 5 ]
[ 9] [ 1 4 2 2 ]
[10] [ 1 4 4 ]
[11] [ 1 5 3 ]
[12] [ 1 6 2 ]
[13] [ 1 8 ]
[14] [ 2 3 4 ]
[15] [ 2 4 3 ]
[16] [ 2 7 ]
[17] [ 3 6 ]
[18] [ 4 5 ]
[19] [ 9 ]
- Joerg Arndt, Jan 01 2013
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1, add(
`if`(n-j>0 and n-j<=s, 0, b(n-j, s)), j=s+1..n))
end:
a:= n-> 1 +add(b(n-j, j), j=1..n/2):
seq(a(n), n=1..60); # Alois P. Heinz, Apr 29 2014
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, Sum[ If[n - j > 0 && n - j <= s, 0, b[n - j, s]], {j, s + 1, n}]]; a[n_] := 1 + Sum[b[n - j, j], {j, 1, n/2}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A168655, A168656, A168657. [From Vladeta Jovovic, Dec 02 2009]
Sequence in context: A172128 A274154 A274153 * A093335 A093333 A116085
KEYWORD
nonn
AUTHOR
Arnold Knopfmacher, Jan 21 2003
EXTENSIONS
More terms from Benoit Cloitre, Jan 21 2003
STATUS
approved