login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105039
Number of compositions of n with unique smallest part.
9
1, 1, 3, 3, 8, 11, 20, 34, 59, 96, 167, 282, 475, 800, 1352, 2275, 3828, 6426, 10785, 18085, 30297, 50698, 84770, 141623, 236425, 394381, 657380, 1094975, 1822628, 3031843, 5040129, 8373594, 13903588, 23072567, 38267330, 63435438, 105103059
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum(k*x^(2*k-1)/((1-x^k)*(1-x)^(k-1)), k=1..infinity).
Also (1-x)^2*Sum(x^k/(1-x-x^(k+1))^2, k=1..infinity). - Vladeta Jovovic, Apr 05 2005
a(n) = 1 + sum(k=2..[(n+3)/2], k * sum(s=1..[(n-1)/k], binomial(n-k*s-1, k-2) ) ). - Max Alekseyev, Apr 15 2005
a(n) ~ (2*sqrt(5)-4)/10 * n * ((1+sqrt(5))/2)^n. - Vaclav Kotesovec, May 02 2014
Equivalently, a(n) ~ n * phi^(n-3) / 5, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
EXAMPLE
a(5) = 8 because we have 5, 14, 41, 23, 32, 122, 212 and 221.
MAPLE
G:= sum(k*x^(2*k-1)/((1-x^k)*(1-x)^(k-1)), k=1..70): Gser:=series(G, x=0, 44): seq(coeff(Gser, x^n), n=1..41); # Emeric Deutsch, Apr 13 2005
MATHEMATICA
nn=37; Drop[CoefficientList[Series[Sum[x^j/(1-x^(j+1)/(1-x))^2, {j, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Mar 31 2014 *)
PROG
(PARI) a(n)=1+sum(k=2, (n+3)\2, k*sum(s=1, (n-1)\k, binomial(n-k*s-1, k-2))) (Alekseyev)
CROSSREFS
Column k=1 of A238342.
Sequence in context: A233174 A185350 A279910 * A358834 A346005 A276552
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 03 2005
EXTENSIONS
More terms from Emeric Deutsch and Max Alekseyev, Apr 13 2005
STATUS
approved