login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105040
Nonnegative k such that 7*k^2 + 7*k + 1 is a square.
9
0, 15, 111, 3936, 28320, 999855, 7193295, 253959360, 1827068736, 64504677711, 464068265775, 16383934179360, 117871512438240, 4161454776879855, 29938900091047311, 1056993129393303936, 7604362751613578880, 268472093411122320015, 1931478200009757988335
OFFSET
1,2
FORMULA
a(n) = ((7-2*sqrt(7)*(-1)^n)*(8-3*sqrt(7))^((2n-(-1)^n+1)/2)+(7+2*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^((2n-(-1)^n+1)/2)-14)/28. [Bruno Berselli, Jun 13 2012].
G.f.: -3*x^2*(5*x^2+32*x+5)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)). [Colin Barker, Jul 22 2012]
a(n) = A253460(n) - 1. - Michel Marcus, Mar 12 2024
EXAMPLE
3936 = 254*15 + 111 + 15, 28320 = 254*111 + 111 + 15, 999855 = 254*3936 + 111, 7193295 = 254*28320 + 15.
MATHEMATICA
LinearRecurrence[{1, 254, -254, -1, 1}, {0, 15, 111, 3936, 28320}, 20] (* Harvey P. Dale, Jul 25 2018 *)
PROG
(PARI) for(n=0, 7193295, if(issquare(7*n*(n+1)+1), print1(n, ", ")))
CROSSREFS
Sequence in context: A092646 A222117 A105051 * A298123 A370763 A295384
KEYWORD
nonn,easy
AUTHOR
Gerald McGarvey, Apr 03 2005
EXTENSIONS
More terms from Colin Barker, Jun 13 2012
STATUS
approved