login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative k such that 7*k^2 + 7*k + 1 is a square.
9

%I #23 Mar 12 2024 13:00:55

%S 0,15,111,3936,28320,999855,7193295,253959360,1827068736,64504677711,

%T 464068265775,16383934179360,117871512438240,4161454776879855,

%U 29938900091047311,1056993129393303936,7604362751613578880,268472093411122320015,1931478200009757988335

%N Nonnegative k such that 7*k^2 + 7*k + 1 is a square.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,254,-254,-1,1).

%F a(n) = ((7-2*sqrt(7)*(-1)^n)*(8-3*sqrt(7))^((2n-(-1)^n+1)/2)+(7+2*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^((2n-(-1)^n+1)/2)-14)/28. [_Bruno Berselli_, Jun 13 2012].

%F G.f.: -3*x^2*(5*x^2+32*x+5)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)). [_Colin Barker_, Jul 22 2012]

%F a(n) = A253460(n) - 1. - _Michel Marcus_, Mar 12 2024

%e 3936 = 254*15 + 111 + 15, 28320 = 254*111 + 111 + 15, 999855 = 254*3936 + 111, 7193295 = 254*28320 + 15.

%t LinearRecurrence[{1,254,-254,-1,1},{0,15,111,3936,28320},20] (* _Harvey P. Dale_, Jul 25 2018 *)

%o (PARI) for(n=0,7193295,if(issquare(7*n*(n+1)+1),print1(n,",")))

%K nonn,easy

%O 1,2

%A _Gerald McGarvey_, Apr 03 2005

%E More terms from _Colin Barker_, Jun 13 2012