login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295384
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(2*n,n-k)*n^k/k!.
2
1, 1, 0, -15, -112, -135, 9504, 152425, 610560, -27692847, -765107200, -6289891839, 213472972800, 9380264146825, 129378550468608, -3294028613874375, -226623617585053696, -4707649131227927775, 83803818828756418560, 9446689798312021406353, 277055229100887244800000
OFFSET
0,4
FORMULA
a(n) = n! * [x^n] exp(-n*x/(1 - x))/(1 - x)^(n+1).
a(n) = n!*Laguerre(n,n,n).
a(n) = Pochhammer(n, n)*hypergeom([1 - n], [n], n). - Peter Luschny, Mar 23 2023
MAPLE
a := n -> pochhammer(n, n)*hypergeom([1 - n], [n], n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 23 2023
MATHEMATICA
Table[n! SeriesCoefficient[Exp[-n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 20}]
Table[n! LaguerreL[n, n, n], {n, 0, 20}]
Table[(-1)^n HypergeometricU[-n, n + 1, n], {n, 0, 20}]
Join[{1}, Table[n! Sum[(-1)^k Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 20}]]
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, (-1)^k*binomial(2*n, n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
(Magma) [Factorial(n)*(&+[(-1)^k*Binomial(2*n, n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 21 2017
STATUS
approved