login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295384 a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(2*n,n-k)*n^k/k!. 2
1, 1, 0, -15, -112, -135, 9504, 152425, 610560, -27692847, -765107200, -6289891839, 213472972800, 9380264146825, 129378550468608, -3294028613874375, -226623617585053696, -4707649131227927775, 83803818828756418560, 9446689798312021406353, 277055229100887244800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..400

Eric Weisstein's World of Mathematics, Laguerre Polynomial

Wikipedia, Laguerre polynomials

Index entries for sequences related to Laguerre polynomials

FORMULA

a(n) = n! * [x^n] exp(-n*x/(1 - x))/(1 - x)^(n+1).

a(n) = n!*Laguerre(n,n,n).

MATHEMATICA

Table[n! SeriesCoefficient[Exp[-n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 20}]

Table[n! LaguerreL[n, n, n], {n, 0, 20}]

Table[(-1)^n HypergeometricU[-n, n + 1, n], {n, 0, 20}]

Join[{1}, Table[n! Sum[(-1)^k Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 20}]]

PROG

(PARI) for(n=0, 30, print1(n!*sum(k=0, n, (-1)^k*binomial(2*n, n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018

(MAGMA) [Factorial(n)*(&+[(-1)^k*Binomial(2*n, n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018

CROSSREFS

Cf. A006902, A277373, A277423, A295385.

Sequence in context: A105051 A105040 A298123 * A110822 A222410 A001849

Adjacent sequences:  A295381 A295382 A295383 * A295385 A295386 A295387

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Nov 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 08:08 EDT 2020. Contains 336274 sequences. (Running on oeis4.)