login
A295382
Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x).
7
1, -1, -2, -2, 8, 88, 592, 3344, 14464, 2944, -1121536, -21603584, -317969408, -4202380288, -51322677248, -562045749248, -4751724347392, -3419742961664, 1260396818661376, 45221885372727296, 1218206507254153216, 29421299633821057024, 669044215287581769728, 14528992234596624498688
OFFSET
0,3
FORMULA
E.g.f.: exp(-2*x/(1 - x))/(1 - x).
a(n) = n!*Laguerre(n,2).
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k/k!.
a(n) = n!*A160623(n)/A160624(n).
MAPLE
a:=series(exp(-2*x/(1-x))/(1-x), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[-2 x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! LaguerreL[n, 2], {n, 0, 23}]
Table[n! Hypergeometric1F1[-n, 1, 2], {n, 0, 23}]
Table[n! Sum[(-1)^k Binomial[n, k] 2^k/k!, {k, 0, n}], {n, 0, 23}]
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(-2*x/(1-x))/(1-x))) \\ G. C. Greubel, Feb 06 2018
(Magma) [Factorial(n)*(&+[(-1)^k*Binomial(n, k)*2^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Column k=2 of A295381.
Sequence in context: A012659 A009448 A012410 * A123642 A007848 A326906
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 21 2017
STATUS
approved