login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295382
Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x).
7
1, -1, -2, -2, 8, 88, 592, 3344, 14464, 2944, -1121536, -21603584, -317969408, -4202380288, -51322677248, -562045749248, -4751724347392, -3419742961664, 1260396818661376, 45221885372727296, 1218206507254153216, 29421299633821057024, 669044215287581769728, 14528992234596624498688
OFFSET
0,3
FORMULA
E.g.f.: exp(-2*x/(1 - x))/(1 - x).
a(n) = n!*Laguerre(n,2).
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k/k!.
a(n) = n!*A160623(n)/A160624(n).
MAPLE
a:=series(exp(-2*x/(1-x))/(1-x), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[-2 x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! LaguerreL[n, 2], {n, 0, 23}]
Table[n! Hypergeometric1F1[-n, 1, 2], {n, 0, 23}]
Table[n! Sum[(-1)^k Binomial[n, k] 2^k/k!, {k, 0, n}], {n, 0, 23}]
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(-2*x/(1-x))/(1-x))) \\ G. C. Greubel, Feb 06 2018
(Magma) [Factorial(n)*(&+[(-1)^k*Binomial(n, k)*2^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Column k=2 of A295381.
Sequence in context: A012659 A009448 A012410 * A123642 A007848 A326906
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 21 2017
STATUS
approved