The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295385 a(n) = n!*Sum_{k=0..n} binomial(2*n,n-k)*n^k/k!. 7
 1, 3, 32, 579, 14736, 483115, 19376928, 918980139, 50306339072, 3121729082739, 216541483852800, 16603614676249843, 1394473165806440448, 127308860552307549531, 12553171419275174137856, 1329537514269062031406875, 150531055969843353812533248, 18143286205523964035258551651 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..335 Eric Weisstein's World of Mathematics, Laguerre Polynomial Wikipedia, Laguerre polynomials FORMULA a(n) = n! * [x^n] exp(n*x/(1 - x))/(1 - x)^(n+1). a(n) = n!*Laguerre(n,n,-n). a(n) ~ 2^(n - 1/2) * (1 + sqrt(2))^(n + 1/2) * n^n / exp((2 - sqrt(2))*n). - Vaclav Kotesovec, Nov 21 2017 MATHEMATICA Table[n! SeriesCoefficient[Exp[n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 17}] Table[n! LaguerreL[n, n, -n], {n, 0, 17}] Table[(-1)^n HypergeometricU[-n, n + 1, -n], {n, 0, 17}] Join[{1}, Table[n! Sum[Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 17}]] PROG (PARI) for(n=0, 30, print1(n!*sum(k=0, n, binomial(2*n, n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018 (MAGMA) [Factorial(n)*(&+[Binomial(2*n, n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018 CROSSREFS Cf. A082545, A277373, A277423, A295384, A295406, A295407, A295408, A295409. Sequence in context: A058479 A264334 A278069 * A331799 A129431 A297558 Adjacent sequences:  A295382 A295383 A295384 * A295386 A295387 A295388 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Nov 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 08:08 EDT 2020. Contains 336274 sequences. (Running on oeis4.)