login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277373
a(n) = Sum_{k=0..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.
30
1, 2, 14, 168, 2840, 61870, 1649232, 51988748, 1891712384, 78031713690, 3598075308800, 183396819358192, 10239159335648256, 621414669926828102, 40733145577028065280, 2867932866586451980500, 215859025837098699948032, 17295664826665032427023922, 1469838791737283957748596736
OFFSET
0,2
COMMENTS
Limit_{n -> infinity} (LaguerreL(n,-n)/BesselI(0,2*n))^(1/n) = exp(-2 + 1/phi) * phi^2 = 0.657347578792874..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
For m > 0, n!*LaguerreL(n, -m*n) ~ sqrt(1/2 + (m+2)/(2*sqrt(m*(m+4)))) * (2+m+sqrt(m*(m+4)))^n * exp(n*(sqrt(m*(m+4))-m-2)/2) * n^n / 2^n. - Vaclav Kotesovec, Oct 14 2016
For m > 4, (-1)^n * n! * LaguerreL(n, m*n) ~ sqrt(1/2 + (m-2)/(2*sqrt(m*(m-4)))) * exp((m - 2 - sqrt(m*(m-4)))*n/2) * ((m - 2 + sqrt(m*(m-4)))/2)^n * n^n. - Vaclav Kotesovec, Feb 20 2020
LINKS
Eric Weisstein's World of Mathematics, Laguerre Polynomial
Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind
FORMULA
a(n) = p(n,n) where p(n,x) = Sum_{k=0..n} binomial(n,n-k)*x^(n-k)*n!/(n-k)!. The coefficients of these polynomials are in A144084 (sorted by falling powers).
a(n) = n!*LaguerreL(n, -n).
a(n) = (-1)^n*KummerU(-n, 1, -n).
a(n) = n^n*hypergeom([-n, -n], [], 1/n) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
a(n) = n! * [x^n] exp(n*x/(1-x))/(1-x). - Alois P. Heinz, Jun 28 2017
a(n) = n!^2 * [x^n] exp(x) * BesselI(0,2*sqrt(n*x)). - Ilya Gutkovskiy, Jun 19 2022
MAPLE
A277373 := n -> n!*LaguerreL(n, -n): seq(simplify(A277373(n)), n=0..18);
# second Maple program:
a:= n-> n! * add(binomial(n, i)*n^i/i!, i=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jun 27 2017
MATHEMATICA
Table[n!*LaguerreL[n, -n], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
PROG
(Sage)
@cached_function
def L(n, x):
if n == 0: return 1
if n == 1: return 1 - x
return (L(n-1, x) * (2*n-1-x) - L(n-2, x)*(n-1))/n
A277373 = lambda n: factorial(n)*L(n, -n)
print([A277373(n) for n in (0..20)])
(PARI) a(n) = sum(k=0, n, binomial(n, n-k)*n^(n-k)*n!/(n-k)!) \\ Charles R Greathouse IV, Feb 07 2017
(PARI) a(n) = n!*pollaguerre(n, 0, -n); \\ Michel Marcus, Feb 05 2021
(Magma) [(&+[Binomial(n, n-k)*Binomial(n, k)*n^(n-k)*Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 16 2018
CROSSREFS
Cf. A002720 (n!L(n,-1)), A087912 (n!L(n,-2)), A277382 (n!L(n,-3)), A277372 (n!L(n,-n)-n^n), A277423 (n!L(n,n)), A144084 (polynomials).
Cf. A277391 (n!L(n,-2*n)), A277392 (n!L(n,-3*n)), A277418 (n!L(n,-4*n)), A277419 (n!L(n,-5*n)), A277420 (n!L(n,-6*n)), A277421 (n!L(n,-7*n)), A277422 (n!L(n,-8*n)).
Main diagonal of A289192.
Sequence in context: A355781 A003582 A372796 * A084946 A047055 A355779
KEYWORD
nonn,nice
AUTHOR
Peter Luschny, Oct 12 2016
STATUS
approved