|
|
A372796
|
|
E.g.f. A(x) satisfies A(A(A(A(x)))) = (-1/8) * log(1 - 8*x).
|
|
1
|
|
|
0, 1, 2, 14, 168, 2776, 56672, 1342864, 35866368, 1089119616, 39079100032, 1656388518144, 73919648645632, 2888230034093056, 104369370522809344, 10598445084195061760, 1502420051590162006016, 39363517546114295169024, -23019065875812133365235712
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Define the sequence b(n,m) as follows. If n<m, b(n,m) = 0, else if n=m, b(n,m) = 1, otherwise b(n,m) = 1/4 * ( 8^(n-m) * |Stirling1(n,m)| - Sum_{l=m+1..n-1} (b(n,l) + Sum_{k=l..n} (b(n,k) + Sum_{j=k..n} b(n,j) * b(j,k)) * b(k,l)) * b(l,m) ). a(n) = b(n,1).
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|