OFFSET
0,2
COMMENTS
In general, for b > 0, if e.g.f. = exp(x + (exp(b*x) - 1)/b), then a(n) ~ b^(n + 1/b) * n^(n + 1/b) * exp(n/LambertW(b*n) - n - 1/b) / (sqrt(1 + LambertW(b*n)) * LambertW(b*n)^(n + 1/b)). - Vaclav Kotesovec, Jun 26 2022
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..180
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
FORMULA
E.g.f.: exp(x + (exp(10*x) - 1)/10).
a(n) = exp(-1/10) * Sum_{k>=0} (10*k + 1)^n / (10^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 10^(n + 1/10) * n^(n + 1/10) * exp(n/LambertW(10*n) - n - 1/10) / (sqrt(1 + LambertW(10*n)) * LambertW(10*n)^(n + 1/10)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/10)*exp(10*z)-(1/10)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
MATHEMATICA
With[{m=20, b=10}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 10^k * BellB[k, 1/10], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=10; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
(Magma) m:=20; c:=10; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=10; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved