login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003575
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=3.
17
1, 2, 7, 35, 214, 1523, 12349, 112052, 1120849, 12219767, 143942992, 1819256321, 24526654381, 350974470746, 5308470041299, 84554039118383, 1413794176669942, 24745966692370607, 452277149756692105, 8612255652371171012, 170517319084490074405
OFFSET
0,2
COMMENTS
Named after the American mathematician Thomas Allan Dowling (b. 1941). - Amiram Eldar, Jun 06 2021
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math., Vol. 159, No. 1-3 (1996), pp. 13-33.
Thomas A. Dowling, A class of geometric lattices based on finite groups, Journal of Combinatorial Theory, Series B, Vol. 14, No. 1 (1973), pp. 61-86.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
Mahid M. Mangontarum and Jacob Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J. Int. Seq., Vol. 18 (2015), Article 15.9.8.
FORMULA
E.g.f.: exp(x + (exp(3*x) - 1)/3).
G.f.: 1/(1-x*Q(0)), where Q(k) = 1 + x/(1 - x + 3*x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
a(n) = exp(-1/3) * Sum_{k>=0} (3*k + 1)^n / (3^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 3^(n + 1/3) * n^(n + 1/3) * exp(n/LambertW(3*n) - n - 1/3) / (sqrt(1 + LambertW(3*n)) * LambertW(3*n)^(n + 1/3)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(n!*exp(z+(1/3)*exp(3*z)-(1/3)), z, n+1), z, n), n=0..30); # Muniru A Asiru, Feb 19 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[x+Exp[3x]/3-1/3], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 04 2019 *)
Table[Sum[Binomial[n, k] * 3^k * BellB[k, 1/3], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + exp(3*x)/3 - 1/3))) \\ Michel Marcus, Feb 09 2018
(Magma) m:=30; c:=3; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 20 2019
(Sage)
b=3;
def A003575_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(x +(exp(b*x)-1)/b) ).egf_to_ogf().list()
A003575_list(30) # G. C. Greubel, Feb 20 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), this sequence (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
Sequence in context: A172511 A214461 A130458 * A043546 A350309 A307441
KEYWORD
nonn
EXTENSIONS
Name clarified by G. C. Greubel, Feb 20 2019
STATUS
approved