login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003578
Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=6.
15
1, 2, 10, 80, 772, 8648, 111592, 1631360, 26518672, 472528160, 9139219360, 190461416192, 4250569655872, 101040920561792, 2546488866632320, 67772341398044672, 1898177372174512384, 55780954727160472064, 1715291443214323558912, 55062161002484359565312
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(x + (exp(6*x) - 1)/6).
a(n) = exp(-1/6) * Sum_{k>=0} (6*k + 1)^n / (6^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 6^(n + 1/6) * n^(n + 1/6) * exp(n/LambertW(6*n) - n - 1/6) / (sqrt(1 + LambertW(6*n)) * LambertW(6*n)^(n + 1/6)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/6)*exp(6*z)-(1/6)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 23 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[x+Exp[6x]/6-1/6], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 12 2017 *)
Table[Sum[Binomial[n, k] * 6^k * BellB[k, 1/6], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=6; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
(Magma) m:=20; c:=6; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=6; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), this sequence (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
Sequence in context: A108486 A152168 A379383 * A274276 A152600 A371460
KEYWORD
nonn
STATUS
approved