login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003576
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=4.
17
1, 2, 8, 48, 352, 3008, 29440, 324096, 3947520, 52541440, 757260288, 11733385216, 194272854016, 3419584921600, 63707979972608, 1251489089060864, 25836869372608512, 558946705406427136, 12638569755079344128, 298003073694026432512, 7312035980392431353856
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(z + (exp(4*z) - 1)/4).
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 26 2013
a(n) = exp(-1/4) * Sum_{k>=0} (4*k + 1)^n / (4^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 4^(n + 1/4) * n^(n + 1/4) * exp(n/LambertW(4*n) - n - 1/4) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^(n + 1/4)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/4)*exp(4*z)-(1/4)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 22 2019
MATHEMATICA
With[{m=20, b=4}, CoefficientList[Series[Exp[x+(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 22 2019 *)
Table[Sum[Binomial[n, k] * 4^k * BellB[k, 1/4], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=4; Vec(serlaplace(exp(x+(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 22 2019
(Magma) m:=20; c:=4; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 22 2019
(Sage) m = 20; b=4; T = taylor(exp(x+(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 22 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), this sequence (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
Sequence in context: A136722 A085615 A054726 * A225042 A326887 A095989
KEYWORD
nonn
STATUS
approved