Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:44:32
%S 1,2,8,48,352,3008,29440,324096,3947520,52541440,757260288,
%T 11733385216,194272854016,3419584921600,63707979972608,
%U 1251489089060864,25836869372608512,558946705406427136,12638569755079344128,298003073694026432512,7312035980392431353856
%N Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=4.
%H Muniru A Asiru, <a href="/A003576/b003576.txt">Table of n, a(n) for n = 0..230</a>
%H Moussa Benoumhani, <a href="https://dx.doi.org/10.1016/0012-365X(95)00095-E">On Whitney numbers of Dowling lattices</a>, Discrete Math. 159 (1996), no. 1-3, 13-33.
%F E.g.f.: exp(z + (exp(4*z) - 1)/4).
%F G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Sep 26 2013
%F a(n) = exp(-1/4) * Sum_{k>=0} (4*k + 1)^n / (4^k * k!). - _Ilya Gutkovskiy_, Apr 16 2020
%F a(n) ~ 4^(n + 1/4) * n^(n + 1/4) * exp(n/LambertW(4*n) - n - 1/4) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^(n + 1/4)). - _Vaclav Kotesovec_, Jun 26 2022
%p seq(coeff(series(factorial(n)*exp(z+(1/4)*exp(4*z)-(1/4)),z,n+1), z, n), n = 0 .. 20); # _Muniru A Asiru_, Feb 22 2019
%t With[{m=20, b=4}, CoefficientList[Series[Exp[x+(Exp[b*x]-1)/b], {x,0,m}], x]*Range[0, m]!] (* _G. C. Greubel_, Feb 22 2019 *)
%t Table[Sum[Binomial[n, k] * 4^k * BellB[k, 1/4], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Apr 17 2020 *)
%o (PARI) my(x='x+O('x^20)); b=4; Vec(serlaplace(exp(x+(exp(b*x)-1)/b))) \\ _G. C. Greubel_, Feb 22 2019
%o (Magma) m:=20; c:=4; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Feb 22 2019
%o (Sage) m = 20; b=4; T = taylor(exp(x+(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, Feb 22 2019
%Y Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), this sequence (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
%K nonn
%O 0,2
%A _N. J. A. Sloane_