login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003581
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=9.
13
1, 2, 13, 143, 1852, 27563, 473725, 9290396, 203745235, 4912490375, 128777672338, 3643086083981, 110557605978901, 3579776914324250, 123074955978249433, 4474133111905169219, 171363047274358839412, 6893620459732188296591, 290475101469031118494993
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(x + (exp(9*x) - 1)/9).
G.f.: 1/W(0), where W(k) = 1 - x - x/(1 - 9*(k+1)*x/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2014
a(n) = exp(-1/9) * Sum_{k>=0} (9*k + 1)^n / (9^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 9^(n + 1/9) * n^(n + 1/9) * exp(n/LambertW(9*n) - n - 1/9) / (sqrt(1 + LambertW(9*n)) * LambertW(9*n)^(n + 1/9)). - Vaclav Kotesovec, Jun 26 2022
EXAMPLE
G.f. = 1 + 2*x + 13*x^2 + 143*x^3 + 1852*x^4 + 27563*x^5 + ...
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/9)*exp(9*z)-(1/9)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
MATHEMATICA
With[{m=20, b=9}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 9^k * BellB[k, 1/9], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) Vec(serlaplace(exp(z + (exp(9*z) - 1)/9))) \\ Michel Marcus, Nov 07 2014
(Magma) m:=20; c:=9; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=9; T = taylor(exp(x +(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), this sequence (b=9), A003582 (b=10), A364069 (b=63), A364070 (b=624).
Sequence in context: A003414 A003326 A207493 * A129256 A046245 A178248
KEYWORD
nonn
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved