login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207493
E.g.f. A(x) is the series reversion of 2*x-1/2*x^2-exp(x)+1.
0
1, 2, 13, 141, 2141, 41798, 997340, 28124253, 915095222, 33744966795, 1390772973547, 63353273661835, 3160751396077900, 171405094563763674, 10038777321831260503, 631498191927510881178, 42464602911622645539047, 3039724643022777390236243
OFFSET
1,2
FORMULA
a(n) = (sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, 1/l!*sum(i=0..l, ((-1)^(i+l)*2^(l-2*i)* C(l,i)*stirling2(n+j-i-l-1,j-l))/(n+j-i-l-1)!))))).
a(n) ~ n^(n-1) / (sqrt(1+c) * exp(n) * (3-c*(2+c)/2)^(n-1/2)), where c = LambertW(exp(2)) = 1.5571455989976... (see A226571). - Vaclav Kotesovec, Jan 22 2014
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[2*x-1/2*x^2-E^x+1, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *)
PROG
(Maxima) a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum(1/l!*sum(((-1)^(i+l)*2^(l-2*i) *binomial(l, i)*stirling2(n+j-i-l-1, j-l))/(n+j-i-l-1)!, i, 0, l), l, 0, j), j, 0, k), k, 0, n-1));
CROSSREFS
Cf. A226571.
Sequence in context: A143137 A003414 A003326 * A003581 A129256 A046245
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 18 2012
STATUS
approved