login
A371460
Binomial transform of A355409.
2
1, 2, 10, 80, 838, 10952, 171910, 3148280, 65890198, 1551389192, 40586247910, 1167964662680, 36666464437558, 1247011549249832, 45672691012357510, 1792280373542404280, 75021202465129000918, 3336499249170658956872, 157116438405334017308710, 7809681380575733223237080, 408621675981135189773468278
OFFSET
0,2
FORMULA
a(0) = 1, a(n) = (-1)^n + Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
a(0) = 1, a(n) = 1 + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
E.g.f.: exp(x)/(1 + exp(2*x) - exp(3*x)).
PROG
(SageMath)
def a(n):
if n==0:
return 1
else:
return (-1)^n + sum([(1-(-2)^j)*binomial(n, j)*a(n-j) for j in [1, .., n]])
list(a(n) for n in [0, .., 20])
(SageMath)
f= e^(x)/(1 + e^(2*x) - e^(3*x))
print([(diff(f, x, i)).subs(x=0) for i in [0, .., 20]])
CROSSREFS
Cf. A355409.
Sequence in context: A003578 A274276 A152600 * A220112 A367851 A048286
KEYWORD
nonn
AUTHOR
STATUS
approved