OFFSET
0,2
COMMENTS
G.f. A(x) satisfies A(x)=(A(0)+A(x/(1-x)^2)(1+x)/(1-x))/2.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300
Octavio Arizmendi, Takahiro Hasebe, and Franz Lehner, Cyclic independence: Boolean and monotone, arXiv:2204.00072 [math.PR], 2022.
C. J. Smyth, The mean values of algebraic integers, Math. Comp 42 (1984), 663-681; see eqs. (5.4), (5.8), (5.12).
FORMULA
a(n) ~ c * 2^n * n^(n + 1/2 - log(2)/4) / (exp(n) * (log(2))^n), where c = 1.64631699329139900560839601704146775549945357007201882... . - Vaclav Kotesovec, Aug 08 2014
PROG
(PARI) a(n)=local(A); if(n<1, n==0, A=1; for(k=1, n, A=1+Pol(subst(A+x*O(x^k), x, x/(1-x)^2)*(1+x)/(1-x))-A); polcoeff(A, n))
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Michael Somos, Sep 24 2003
STATUS
approved